"Oil and the U.S. Economy"

Yale Alumni in Energy Seventh Annual Conference

PINE BROOK

The Rise of Petro America: 2009-2014

- U.S. oil production increased by nearly 3.7 million B/D and total liquids production increased by nearly 4.9 million B/D and now approximates 11.7 million B/D
- The increase in U.S. liquids production accounted for a direct boost to GDP approximating \$175 - \$200 billion per year at historical prices (all import substitution)
- Increased GDP accompanied by 1.5 2 million new jobs
- Reduced reliance on imported oil so that in 2014, the U.S. imported about 27% of its petroleum, down from 57% in 2009

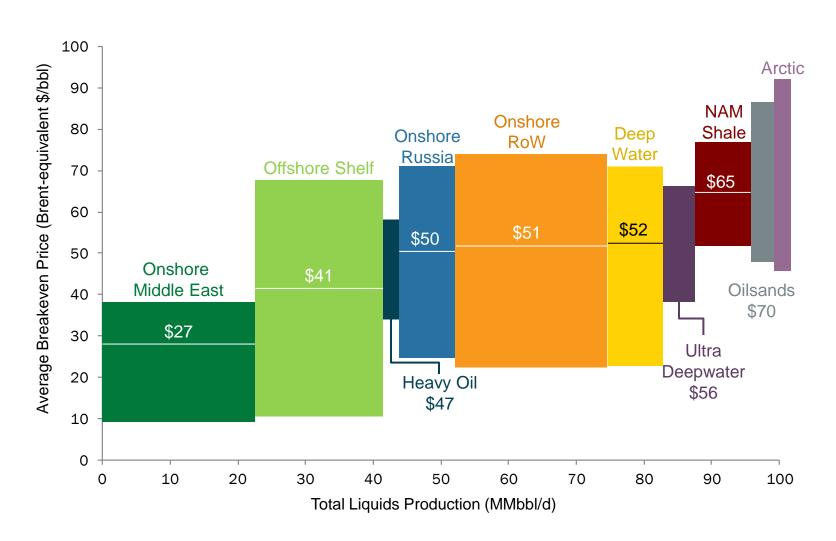
The Rise of Petro America: The Goldilocks Years

- The rise in tight oil production took place against a background of growing global demand and shrinking non-U.S. supplies
- Prices remained robust and at a level in excess of that needed to create new sources of supply
- Increased tight oil constituted the majority of new supplies in the world oil market
- The real price of oil continued to be high in the face of growing supplies
- The economics of the major unconventional plays improved every year as the industry learned how to drive down drilling and operating costs

Reality Sets In: The Second Half of 2014

- Why did a 1 million B/D "oversupply" in a 93+ million B/D market result in prices falling 60%?
- No "New News"
 - In 2013, OPEC called for a 2 million barrels a day reduction to balance the world markets at its target price of \$90/barrel
 - Global inventories were not overflowing and are still ample
- Lots of speculation
 - War on U.S. shale/Russia and Iran
 - Saudi focus on market share
 - Change in the structure of the oil market
- Financial market overwhelmed physical market

A Perspective on Volatility: Short Run


- There is no "economic floor" to short-term oil prices; the marginal cost to produce from existing wells ranges from \$1 to \$20 per barrel
- The question should be: why are crude prices not substantially lower today given that over a million barrels per day are going into storage?
- A 50% reduction in rig count is required to halt growth in 2015
- U.S. oil production is unlikely to decline in 2015 and is likely to be flat in 2016

A Perspective on Volatility: Long Run

- In the long run, prices have to be high enough to encourage new supplies to be brought to market as global demand continues to grow and existing wells deplete
- North American Unconventional Oil Production continues to be the resource which will balance the market over the long term
 - World market could balance in the \$60-80 range
 - This range allows robust economic growth
- Problem: OPEC needs a higher price to meet the "social costs" of production

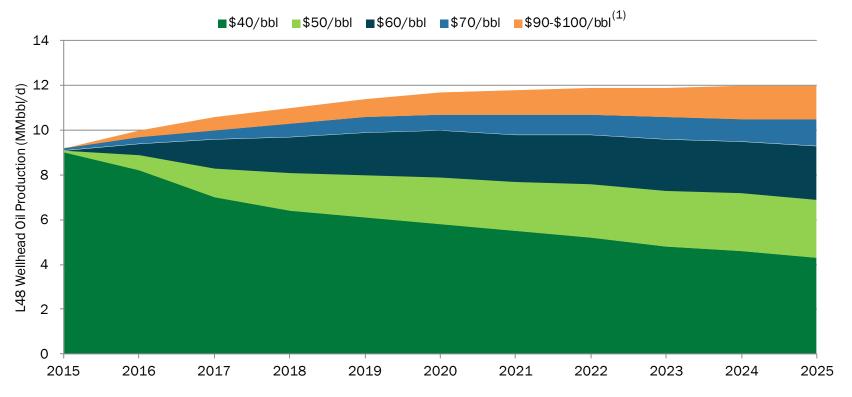
Global Supply Curve: Shales Needed to Meet Demand

Global Marginal Breakeven Oil Supply Curve

What Does the U.S. Supply Curve Look Like?

- The required price for North American Unconventional Production varies with how much production is needed to balance the world's oil market
- Not all basins are the same
- Cost is a fluid concept
 - Service costs are very responsive to changes in activity
 - Play economics are very responsive to changes in service costs

Prices and Costs Adjust to Protect the Margin


	\$60/bbl	\$80/bbl	\$100/bbl							
Half Cycle IRR Sensitivities										
Current Costs	14%	33%	57%							
Adjusted Service Costs ⁽¹⁾	27%	56%	94%							
Full Cycle IRR Sensitivities										
Current Costs	11%	26%	46%							
Adjusted Land + Service Costs ⁽²⁾	21%	45%	76%							

Note: "Current Costs" economics are as of September 2014 and assume \$8 million well cost and \$5,000/undeveloped acre acquisition cost.

⁽¹⁾ Assumes \$6.4 million well cost (~80% of base case)

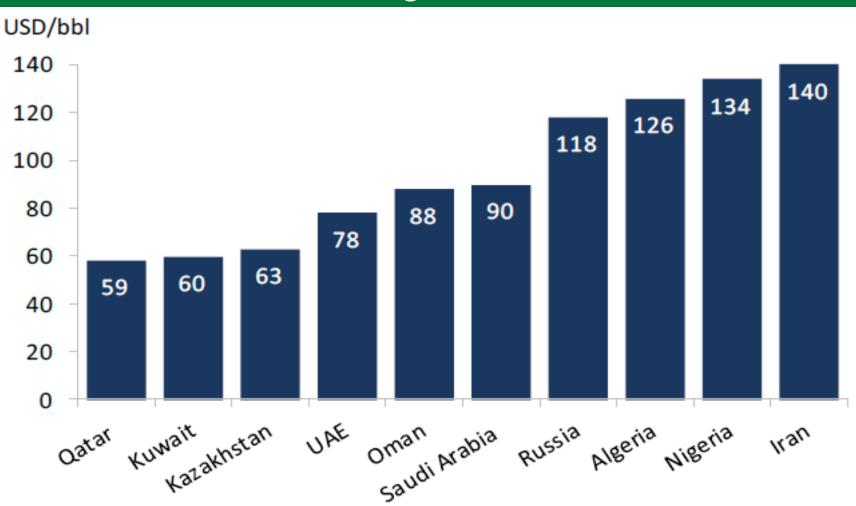
⁽²⁾ Assumes \$6.4 million well cost (~80% of base case) and \$4,000/undeveloped acre acquisition cost.

U.S. Supply Curve: Another Perspective (ITG Lower 48 Forecast)

Lower 48 Production Forecast At Various WTI Prices, MMbbl/d (Assuming 20% Reduction in D&C Costs)												
	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
\$90-\$100/bbl	8.1	9.2	10.0	10.6	11.0	11.4	11.7	11.8	11.9	11.9	12.0	12.0
\$70/bbl	8.1	9.2	9.7	10.0	10.3	10.6	10.7	10.7	10.7	10.6	10.5	10.5
\$60/bbl	8.1	9.1	9.4	9.6	9.7	9.9	10.0	9.8	9.8	9.6	9.5	9.3
\$50/bbl	8.1	9.1	8.9	8.3	8.1	8.0	7.9	7.7	7.6	7.3	7.2	6.9
\$40/bbl	8.1	9.0	8.2	7.0	6.4	6.1	5.8	5.5	5.2	4.8	4.6	4.3

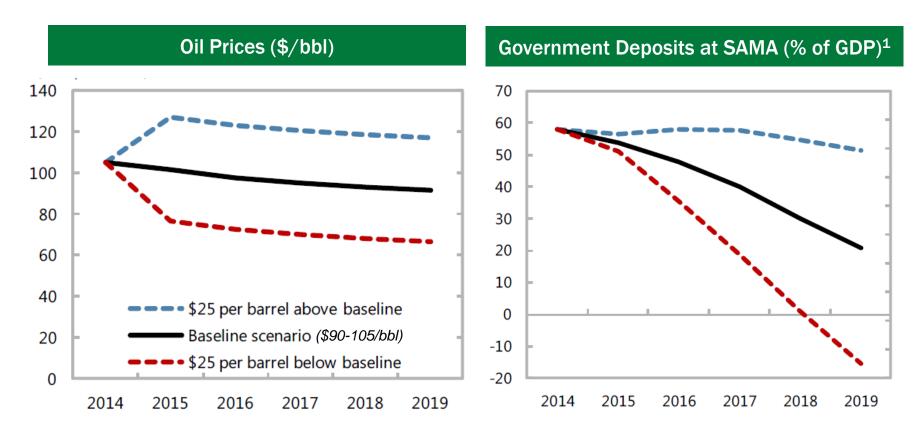
Source: ITG.

Methodology: ITG created production forecasts and ran WTI sensitivities for over 300 regions in the L48. In regions that generate less than a 10% IRR at a given WTI price, ITG models a gradual drop in the rig count to zero over a 12-month period. ITG assumes a 6-month delay in the production response to a change in the rig count to account for spudto-sales times and backlog wells. The model runs \$3.50 NYMEX flat and accounts for a 20% reduction in D&C costs.


^{(1) \$90-\$100/}bbl WTI case does not assume a reduction in D&C costs. All other cases assume a 20% reduction in D&C costs.

Three Possible Outcomes

- The call on North American shale is permanently reduced
 - Fewer wells are required to maintain supplies
 - Service costs down for an extended period
 - Prices stay in the \$60-70/barrel range
 - Long-term problem for OPEC
- Demand recovers /traders' perceptions change and prices quickly return to \$80+
 - U.S. activity resumes and prices fall again
- OPEC succeeds in eliminating non-shale production and maintains prices in the desired range


OPEC Needs High Oil Prices

Saudi Arabia Cannot Last Forever

- Following the Arab Spring, Saudi Arabia announced ambitious social spending plans to maintain civil content. This
 increase in government spending resulted in a corresponding increase in fiscal breakeven prices, from \$78/bbl in
 2012 to \$89/bbl in 2013.
- Currently, the IMF forecasts that Saudi Arabia will run a fiscal deficit in 2015, which will grow to 7.5% of GDP by 2019.
- To maintain its long-term social spending plans, Saudi Arabia requires high long-term oil prices. If prices remain at levels \$25 below the IMF's reference case of \$90-105/bbl, government reserves will be depleted by 2018.

Source: International Monetary Fund.

Investment Options: Upstream Sector

- Exploration and Development
 - Need to replace 3+mmboe/d in domestic production
 - Wellhead economics must adjust to make this happen
 - Need to be top decile in operations and top quartile in geology
 - Risk assets trading at a discount
 - Very few companies can finance growth internally
- Buying production
 - Very efficient even in today's environment
 - Priced at 10% with prices at or above the strip
 - Essentially, an expensive option on a price recovery
- Distressed Debt/Assets
 - Where the herd of smart money has already headed
 - Everybody wants the low risk/high return assets

What Does "A New Normal" Mean to the U.S Economy?

- \$50 per barrel price reduction in imported oil is \$100 billion boost to GDP
- Price reduction on 12 million B/D of domestic production is complicated
 - Do consumer real incomes rise to offset lower profits of producers?
 - Do governments borrow to replace lost tax revenues and, if so, does this borrowing crowd out other investments?
- Net benefit from price reduction on total consumption is unclear
 - In theory, this is equivalent to a \$350 billion stimulus package
 - Do consumers spend or save their savings and do governments monetize their lower revenues?
- Will the call on U.S. production be 5 or 10+ million B/D? This is perhaps the most important question, as each 1 million barrel of day reduction in domestic production is a \$15-30 billion reduction in annual GDP

What Does a \$50 Decrease in Oil Prices Mean Globally?

- Macro Economists will tell you that there should be no net change to aggregate demand from a reduction in prices
 - Lower incomes in producing countries offset by higher incomes in consuming countries
 - Overall, a zero sum game
- Real world impact very complicated
 - Very different impact on producers and net importers
 - Net impact on global aggregate demand is not clear
 - Net exporters likely to maintain expenditures by spending savings or borrowing
 - Impact on financial markets from reduced need to recycle petrodollars may result in lower interest rates
 - Consuming countries will see some reduction in reported inflation
 - A golden opportunity to reduce fuel subsidies in the developing world
 - Deflation fears seem unwarranted unless policy makers mistake a decrease in costs as a demand-induced reduction in prices
 - Likely winners are the U.S. and China